Build AI-Powered Applications with Python Flask & Amazon Bedrock: Step-by-Step Guide

Actors and Components

  1. User:

    • Interacts with the application through the Web Interface (frontend).
  2. Frontend:

    • Web Interface:
      • Displays a user-friendly interface.
      • Collects input (prompt) from the user.
      • Sends the input to the backend for processing.
  3. Backend:

    • Flask Application:
      • Processes user input and communicates with Amazon Bedrock API.
      • Handles requests and returns AI-generated responses to the frontend.
  4. Amazon Bedrock:

    • Foundation Models:
      • Provides the AI capabilities (e.g., text generation, summarization).
      • Responds to API requests made by the Flask application.
  5. Deployment:

    • Two deployment options:
      • AWS Elastic Beanstalk: A managed service for deploying and scaling web applications.
      • AWS EC2: A virtual server in the cloud for custom deployment and management.

Workflow

  1. User Interaction:

    • The user inputs a prompt via the Web Interface.
  2. Request Handling:

    • The Web Interface sends the prompt to the Flask backend.
  3. AI Processing:

    • The Flask application forwards the request to the Amazon Bedrock API.
    • Bedrock invokes the foundation model to process the prompt.
  4. Response Generation:

    • The processed response is sent back to the Flask application.
  5. Response Delivery:

    • Flask delivers the AI-generated response to the Web Interface for display to the user.
  6. Deployment:

    • The application can be deployed using either Elastic Beanstalk or EC2 for scalability and accessibility.

This architecture ensures a seamless user experience while leveraging Amazon Bedrock's AI capabilities.


Here’s a comprehensive guide to building AI-driven applications using Python Flask and Amazon Bedrock, from scratch to deployment.


1. Overview

Amazon Bedrock allows developers to build and scale AI applications using foundation models (FMs) from providers like Anthropic, Stability AI, Cohere, and more, without managing infrastructure. Flask is a lightweight Python framework for building web applications.


2. Prerequisites

  1. AWS Account: Ensure access to Amazon Bedrock (check availability in your region).
  2. Python Environment:
    • Install Python 3.8+.
    • Install Flask: pip install flask.
  3. AWS SDK:
    • Install Boto3: pip install boto3.
  4. IDE: Use VS Code, PyCharm, or any preferred editor.
  5. AWS CLI: Configure it using aws configure.

3. Architecture

  1. Frontend: A simple web interface for user interaction.
  2. Backend: Flask application to handle requests and interact with Amazon Bedrock.
  3. AI Model: Use Amazon Bedrock to process AI-related tasks.
  4. Deployment: Deploy the application on AWS (Elastic Beanstalk or EC2).

4. Steps to Build the Application

Step 1: Set Up Flask Project

Create a Flask project structure:

ai_app/ ├── app.py ├── templates/ │ └── index.html ├── static/ │ ├── style.css │ └── script.js └── requirements.txt

app.py

from flask import Flask, render_template, request, jsonify
import boto3
import os

app = Flask(__name__)

# Initialize Amazon Bedrock client
def get_bedrock_client():
    return boto3.client(
        'bedrock',
        region_name='us-east-1',  # Replace with your region
        aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),
        aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),
    )

@app.route("/")
def index():
    return render_template("index.html")

@app.route("/generate", methods=["POST"])
def generate():
    try:
        prompt = request.json.get("prompt")
        bedrock_client = get_bedrock_client()
        
        # Call Bedrock to generate text
        response = bedrock_client.invoke_model(
            modelId="anthropic.claude-v2",  # Replace with your desired model
            contentType="application/json",
            accept="application/json",
            body={"prompt": prompt, "maxTokens": 100}
        )
        generated_text = response["body"].read().decode("utf-8")
        return jsonify({"response": generated_text})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

if __name__ == "__main__":
    app.run(debug=True)

requirements.txt

flask
boto3

index.html

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AI-Driven App</title>
    <link rel="stylesheet" href="/static/style.css">
</head>
<body>
    <h1>AI Text Generator</h1>
    <form id="ai-form">
        <textarea id="prompt" placeholder="Enter your prompt"></textarea>
        <button type="submit">Generate</button>
    </form>
    <div id="response"></div>
    <script src="/static/script.js"></script>
</body>
</html>

script.js

document.getElementById("ai-form").addEventListener("submit", async (e) => {
    e.preventDefault();
    const prompt = document.getElementById("prompt").value;
    const responseDiv = document.getElementById("response");

    responseDiv.innerHTML = "Generating...";
    const response = await fetch("/generate", {
        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({ prompt }),
    });

    const data = await response.json();
    responseDiv.innerHTML = data.response || data.error;
});

style.css

body {
    font-family: Arial, sans-serif;
    text-align: center;
    margin: 0;
    padding: 0;
}

h1 {
    margin: 20px;
}

form {
    margin: 20px;
}

textarea {
    width: 300px;
    height: 100px;
}

button {
    padding: 10px 20px;
    margin-top: 10px;
}

#response {
    margin: 20px;
    font-weight: bold;
}

5. Deploy the Application

Option 1: Elastic Beanstalk

  1. Initialize: Run eb init and configure your environment.
  2. Deploy: Run eb deploy to deploy your application.

Option 2: EC2

  1. Launch EC2 Instance: Choose a Python-compatible AMI.
  2. Setup Flask:
    sudo yum install python3
    pip3 install flask boto3
  3. Run the App: Use nohup python3 app.py & to keep it running.

6. Testing

  1. Navigate to the deployed app URL.
  2. Enter a prompt in the text area.
  3. Click "Generate" to receive a response from Amazon Bedrock.

7. Enhancements

  1. Authentication: Secure API with AWS IAM roles or tokens.
  2. Advanced Models: Experiment with different Bedrock models.
  3. Scalability: Use AWS Lambda and API Gateway for a serverless backend.
  4. UI Improvements: Enhance the frontend with frameworks like React or Vue.js.

This approach ensures an end-to-end AI-driven application leveraging Amazon Bedrock's foundation models and Flask's simplicity for rapid development.


🎉 Master Python Web Development with Flask! 🚀

Want to build sleek, powerful web applications with Python? Look no further! 📚 "Building Web Apps with Python and Flask" by Malhar Lathkar is your ultimate guide to becoming a web development pro!

🔥 What’s Inside?

  • Core Flask Features: URL routing, templates, static files, cookies, and sessions.
  • Advanced Topics: Flask extensions, database integrations, and RESTful API deployment.
  • Flask Tools: Leverage Jinja2, Werkzeug, and more!
  • Build Scalable Apps: Learn blueprints, design patterns, and modular structures.

💡 Whether you're a Python enthusiast, a beginner, or a tech startup looking to scale, this guide is packed with practical insights to turbocharge your development skills.

📈 Why This Book?

  • Expert-led coverage from industry pro Malhar Lathkar.
  • Real-world projects to practice your skills.
  • Learn to deploy fully functional apps and APIs!

🚀 Ready to Build the Future of Web Apps? 💥 Grab your copy of "Building Web Apps with Python and Flask" today and take your Python web development journey to the next level! 🌐

Don’t miss out – unlock your web development potential NOW!

Popular posts from this blog

Learn Java 8 streams with an example - print odd/even numbers from Array and List

Java Stream API - How to convert List of objects to another List of objects using Java streams?

Registration and Login with Spring Boot + Spring Security + Thymeleaf

Java, Spring Boot Mini Project - Library Management System - Download

ReactJS, Spring Boot JWT Authentication Example

Top 5 Java ORM tools - 2024

Java - Blowfish Encryption and decryption Example

Spring boot video streaming example-HTML5

Google Cloud Storage + Spring Boot - File Upload, Download, and Delete